The sacrificial role of easily oxidizable sites in the protection of DNA from damage
نویسندگان
چکیده
It has been suggested that DNA contains sacrificial nucleobase sequences that protect sensitive regions of the genome from oxidative damage. Oxidation of DNA by loss of an electron generates a radical cation that can migrate long distances by hopping. The radical cation can be trapped irreversibly at certain sites (GG steps) by reaction with H2O or O2 leading to the formation of lesions (oxidative damage). A series of DNA oligomers that contain regularly spaced GG steps and an 8-oxo-7,8-dihydroguanine (8-oxoG), which serves as a proxy for possibly sacrificial protective low oxidation potential sites, was prepared and analyzed. We find that in certain special sequences of DNA nucleobases that 8-oxoG protects remote GG steps from oxidative damage but that this is not a general phenomenon extending to normal mixed sequence DNA. This is a consequence of the change in the relative rate of charge hopping compared with trapping of the radical cation. When hopping is relatively slow, 8-oxoG exerts no protective effect. Thus, it seems unlikely that low oxidation potential sequences play a meaningful part in protecting mixed sequence DNA from damage.
منابع مشابه
Experimental comparison of sacrificial piles and submerged vanes as scour countermeasures around bridge pier
An experimental study has been conducted on the effectiveness of two types of flow-altering countermeasures placed around a cylindrical pier under clear water condition, which include sacrificial piles and submerged vanes. Their arrangements follow the optimal configurations recommended in the published articles with some modification. The temporal evolution of maximum scour depth and its equil...
متن کاملMelatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature)
Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation thera...
متن کاملConsumption of antioxidant dietary agents, curcumin and vitamin C, protects cellular DNA from gamma-radiation
Background: Exposure to ionizing radiation results in genotoxicity and the unrepaired lesions in cellular DNA results in cell cycle arrest, reproductive death, interphase death, division delay, chromosome aberrations, mutations, etc. leading to the intensive destruction of cells and violation of their proliferative capacity there by adversely affecting the mammalian system. Since ionizing radia...
متن کاملExpression of phosphorylated histone H2AX in blood lymphocytes of patients undergoing angiographic procedures following exposure to X‐rays
Introduction: Coronary angiography is a Diagnostic-Therapeutic method involving ionizing radiation. This method causes to DNA damage with form double stranded breaks which is followed by the phosphorylation of the histone, H2AX. H2AX is a key factor in the repair process of damaged DNA which will accumulate to damage sites. In human cells, H2AX constitutes about 10% of the H2A ...
متن کاملAntioxidant capacity and radioprotective properties of the flavonoids galangin and kaempferide isolated from Alpinia galanga L. (Zingiberaceae) against radiation induced cellular DNA damage
Background: Alpinia galanga L. belonging to the family Zingiberaceae is widely grown in the state of Kerala, India. They are effective antioxidant and free radical scavenger under both in vitro and in vivo condition. The efficacy of the isolated flavonoids in conferring protection from radiation induced damages to genomic DNA was studied. Materials and Methods: The bioflavonoids, galangin and k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005